High-level expression, purification, and enzymatic characterization of truncated human plasminogen (Lys531-Asn791) in the methylotrophic yeast Pichia pastoris

نویسندگان

  • Rongzeng Liu
  • Bing Zhao
  • Yanling Zhang
  • Junxiang Gu
  • Mingrong Yu
  • Houyan Song
  • Min Yu
  • Wei Mo
چکیده

BACKGROUND Plasmin is a serine protease that plays a critical role in fibrinolysis, which is a process that prevents blood clots from growing and becoming problematic. Recombinant human microplasminogen (rhμPlg) is a derivative of plasmin that solely consists of the catalytic domain of human plasmin and lacks the five kringle domains found in the native protein. Developing an industrial production method that provides high yields of this protein with high purity, quality, and potency is critical for preclinical research. RESULTS The human microplasminogen gene was cloned into the pPIC9K vector, and the recombinant plasmid was transformed into Pichia pastoris strain GS115. The concentration of plasmin reached 510.1 mg/L of culture medium. Under fermentation conditions, the yield of rhμPlg was 1.0 g/L. We purified rhμPlg to 96% purity by gel-filtration and cation-exchange chromatography. The specific activity of rhμPlg reached 23.6 U/mg. The K m of substrate hydrolysis by recombinant human microplasmin was comparable to that of human plasmin, while rhμPlm had higher k cat /Km values than plasmin. The high purity and activity of the rhμPlg obtained here will likely prove to be a valuable tool for studies of its application in thrombotic diseases and vitreoretinopathies. CONCLUSIONS Reliable rhμPlg production (for use in therapeutic applications) is feasible using genetically modified P. pastoris as a host strain. The successful expression of rhμPlg in P. pastoris lays a solid foundation for its downstream application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of pH/buffering conditions effect on the optimization of Recombinant Human Erythropoietin expression in the methylotrophic yeast, Pichia pastoris

Expression of recombinant proteins and drugs in Pichia pastoris has been in development since the late 1980s and the number of recombinant proteins produced in P. pastoris has increased significantly in the past several years. Unlike bacteria, this strain is capable of producing complex proteins with post translational modifications such as correct folding, glycosylation, proteolytic maturation...

متن کامل

P-65: Effective Parameters on the Bovine Follicle Stimulating Hormone Expression in The Pichia Pastoris System

Background: Bovine follicle-stimulating hormone (bFSH) is a heterodimer hormone that consists of a common -subunit which noncovalently associated with the hormone-specific -subunit. During the past 15 years, the methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production because it is able to use methanol as a sole carbon and energy source. Th...

متن کامل

Expression of the VP2 gene of classical D78 infectious bursal disease virus in the methylotrophic yeast Pichia pastoris as a secretory protein

Infectious bursal disease virus (IBDV) is the causative agent of Gumboro disease, an infectious disease of global economic importance in poultry. The expression of heterologous proteins in P.pastoris is fast, simple and inexpensive. In this study, VP2 encoding gene of classical D78 IBDV was amplified using reverse transcription (RT) polymerase chain reaction (PCR) and cloned into pPICZαA vector...

متن کامل

Production of Recombinant Human Granulocyte-Colony Stimulating Factor by Pichia pastoris

Human granulocyte-colony stimulating factor (hG-CSF) cDNA was expressed in the methylotrophic yeast Pichia pastoris under the control of the alcohol oxidase (AOX1) promoter. An expression vector for hG-CSF secretion was constructed using vector pPIC9. Higher levels of hG-CSF was obtained using a P. pastoris Mut+ (methanol utilization fast) phenotype. The effects of environmental factors such as...

متن کامل

Comparison of biochemical properties of recombinant phytase expression in the favorable methylotrophic platforms of Pichia pastoris and Hansenula polymorpha

Phytic acid is the dominant form of phosphorous in plant seeds. However, phytic acid cannot beutilized by animals and causes them serious phosphate deficiency. Utilization of phytase as ananimal feed additive can affect liberation of phosphor and its mineral availability. In this study,heterologous expression of the A. niger phyA gene was investigated in the methylotrophic yeastsP. pastoris and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015